Show simple item record

dc.contributor.authorGuancha-Chalapud, Marcelo A.
dc.contributor.authorSerna-Cock, Liliana
dc.contributor.authorTirado, Diego F.
dc.coverage.spatialColombia
dc.date.accessioned2022-07-27T21:42:30Z
dc.date.available2022-07-27T21:42:30Z
dc.date.issued2022-12
dc.identifier.citationGuancha-Chalapud, M.A.; Serna-Cock, L.; Tirado, D.F. Hydrogels Are Reinforced with Colombian Fique Nanofibers to Improve Techno-Functional Properties for Agricultural Purposes. Agriculture 2022, 12, 117. https://doi.org/10.3390/ agriculture12010117es_ES
dc.identifier.urihttps://hdl.handle.net/11404/7646
dc.descriptionColombia es el mayor productor mundial de fibras de fique (Furcraea bedinghausii), con una producción neta de 30.000 toneladas anuales. Este trabajo propone revalorizar los residuos de la agroindustria colombiana del fique. Para ello, se obtuvieron nanofibras de celulosa del fique y se utilizaron como material de refuerzo para crear hidrogeles acrílicos superabsorbentes. Se sintetizaron hidrogeles acrílicos no reforzados (AHR0) e hidrogeles acrílicos reforzados con nanofibras de fique al 3 % p/p (AHR3), 5 % p/p (AHR5) y 10 % p/p (AHR10) utilizando el método de polimerización en solución. La mejor formulación de hidrogel para fines agrícolas se eligió comparando su comportamiento de hinchamiento, propiedades mecánicas y usando microscopía electrónica de barrido (SEM). Al elevar la concentración de nanofibras al 3% (AHR3), la formulación mejor elegida, aumentó la interacción entre las nanofibras y la matriz polimérica, lo que favoreció la estabilidad de la red. Sin embargo, más allá de AHR3, hubo una mayor viscosidad del sistema reactivo, lo que provocó una reducción en la movilidad de las cadenas poliméricas, desfavoreciendo así la capacidad de hinchamiento. El hidrogel reforzado propuesto en este estudio (AHR3) podría representar un aporte para superar los problemas de aridez de la tierra que se presentan en Colombia, tema que se agudizará en los próximos años debido a la emergencia climática.es_ES
dc.description.abstractColombia is the world’s largest producer of fique fibers (Furcraea bedinghausii), with a net production of 30,000 tons per year. This work proposes to revalue waste from the Colombian fique agroindustry. For this purpose, cellulose nanofibers were obtained from fique and used as reinforcement material to create acrylic superabsorbent hydrogels. Unreinforced acrylic hydrogels (AHR0) and acrylic hydrogels reinforced with fique nanofibers at 3% w/w (AHR3), 5% w/w (AHR5), and 10 % w/w (AHR10) were synthesized using the solution polymerization method. The best hydrogel formulation for agricultural purposes was chosen by comparing their swelling behavior, mechanical properties, and using scanning electron microscopy (SEM). By raising the nanofiber concentration to 3% (AHR3), the best-chosen formulation, the interaction between the nanofibers and the polymer matrix increased, which favored the network stability. However, beyond AHR3, there was a higher viscosity of the reactive system, which caused a reduction in the mobility of the polymer chains, thus disfavoring the swelling capacity. The reinforced hydrogel proposed in this study (AHR3) could represent a contribution to overcoming the problems of land dryness present in Colombia, an issue that will worsen in the coming years due to the climate emergency.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherAgriculturees_ES
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourcehttps://www.mdpi.com/2077-0472/12/1/117es_ES
dc.subject.ddcIngeniería químicaes_ES
dc.subject.otherCiencias naturales, aplicadas y relacionadases_ES
dc.titleHydrogels Are Reinforced with Colombian Fique Nanofibers to Improve Techno-Functional Properties for Agricultural Purposeses_ES
dc.typeArtículo de revistaes_ES
dc.subject.lembFique
dc.subject.lembGeles
dc.subject.lembNanofibras
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES
dc.subject.keywordsAgavees_ES
dc.subject.keywordsGelses_ES
dc.subject.keywordsNanofiberes_ES
dc.subject.keywordsSoil moisture conservationes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES
dcterms.bibliographicCitation1. United Nations. World Population Prospects the 2017 Revision: Key Findings and Advance Tables; United Nations: New York, NY, USA, 2017; p. 53.es_ES
dcterms.bibliographicCitation2. United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/hunger/. (accessed on 10 January 2021).es_ES
dcterms.bibliographicCitation3. van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [CrossRef]es_ES
dcterms.bibliographicCitation4. Hyánková, E.; Kriška Dunajský, M.; Zedník, O.; Chaloupka, O.; Pumprlová Nˇemcová, M. Irrigation with treated wastewater as an alternative nutrient source (for crop): Numerical simulation. Agriculture 2021, 11, 946. [CrossRef]es_ES
dcterms.bibliographicCitation5. Wilson, M.G.; Maggi, A.E.; Castiglioni, M.G.; Gabioud, E.A.; Sasal, M.C. Conservation of ecosystem services in argiudolls of Argentina. Agriculture 2020, 10, 649. [CrossRef]es_ES
dcterms.bibliographicCitation6. Kostrzewska, M.K.; Jastrz ˛ebska, M.; Treder, K.; Wanic, M. Phosphorus in spring barley and Italian rye-grass biomass as an effect of inter-species interactions under water deficit. Agriculture 2020, 10, 329. [CrossRef]es_ES
dcterms.bibliographicCitation7. Pérez-Blanco, C.D.; Hrast-Essenfelder, A.; Perry, C. Irrigation technology and water conservation: A review of the theory and evidence. Rev. Environ. Econ. Policy 2020, 14, 216–239. [CrossRef]es_ES
dcterms.bibliographicCitation8. Mehana, M.; Abdelrahman, M.; Emadeldin, Y.; Rohila, J.S.; Karthikeyan, R. Impact of genetic improvements of rice on its water use and effects of climate variability in Egypt. Agriculture 2021, 11, 865. [CrossRef]es_ES
dcterms.bibliographicCitation9. Yang, Q.; Hu, C.; Li, J.; Yi, X.; He, Y.; Zhang, J.; Sun, Z. A separation and desalination process for farmland saline-alkaline water. Agriculture 2021, 11, 1001. [CrossRef]es_ES
dcterms.bibliographicCitation10. Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Solaiman, Z.M.; Mosharrof, M. Biochar with alternate wetting and drying irrigation: A potential technique for paddy soil management. Agriculture 2021,es_ES
dcterms.bibliographicCitation11, 367. [CrossRef] 11. Feng, W.; Gao, J.; Cen, R.; Yang, F.; He, Z.; Wu, J.; Miao, Q.; Liao, H. Effects of polyacrylamide-based super absorbent polymer and corn straw biochar on the arid and semi-arid salinized soil. Agriculture 2020, 10, 519. [CrossRef]es_ES
dcterms.bibliographicCitation12. Spagnol, C.; Rodrigues, F.H.A.; Neto, A.G.V.C.; Pereira, A.G.B.; Fajardo, A.R.; Radovanovic, E.; Rubira, A.F.; Muniz, E.C. Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur. Polym. J. 2012, 48, 454–463. [CrossRef] Agriculture 2022, 12, 117 10 of 10es_ES
dcterms.bibliographicCitation13. Spagnol, C.; Rodrigues, F.; Pereira, A.; Fajardo, A.; Rubira, A.; Muniz, E. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr. Polym. 2012, 87, 2038–2045. [CrossRef]es_ES
dcterms.bibliographicCitation14. Li, J.; Jia, X.; Yin, L. Hydrogel: Diversity of structures and applications in food science. Food Rev. Int. 2021, 37, 313–372. [CrossRef]es_ES
dcterms.bibliographicCitation15. Song, B.; Liang, H.; Sun, R.; Peng, P.; Jiang, Y.; She, D. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 2020, 144, 219–230. [CrossRef]es_ES
dcterms.bibliographicCitation16. Qu, B.; Luo, Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors — A review. Int. J. Biol. Macromol. 2020, 152, 437–448. [CrossRef]es_ES
dcterms.bibliographicCitation17. Mohite, S.; Prasad, E. Hydrogel Market Outlook - 2027; Allied Market Research: Pune, India, 2020; p. 363.es_ES
dcterms.bibliographicCitation18. Serna Cock, L.; Guancha-Chalapud, M.A. Natural fibers for hydrogels production and their applications in agriculture. Acta Agron. 2017, 66, 495–505. [CrossRef]es_ES
dcterms.bibliographicCitation19. Das, D.; Prakash, P.; Rout, P.K.; Bhaladhare, S. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application. Starch - Stärke 2021, 73, 1900284. [CrossRef]es_ES
dcterms.bibliographicCitation20. Huang, Y.; Li, X.; Lu, Z.; Zhang, H.; Huang, J.; Yan, K.; Wang, D. Nanofiber-reinforced bulk hydrogel: Preparation and structural, mechanical, and biological properties. J. Mater. Chem. B 2020, 8, 9794–9803. [CrossRef]es_ES
dcterms.bibliographicCitation21. Karadag, E.; Baris, O.; Saraydin, D. Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Mater. Des. 2005, 26, 265–270. [CrossRef]es_ES
dcterms.bibliographicCitation22. Zhou, C.; Wu, Q. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surfaces B Biointerfaces 2011, 84, 155–162. [CrossRef]es_ES
dcterms.bibliographicCitation23. Zhou, C.; Wu, Q.; Yue, Y.; Zhang, Q. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J. Colloid Interface Sci. 2011, 353, 116–123. [CrossRef] [PubMed]es_ES
dcterms.bibliographicCitation24. Guancha-Chalapud, M.A.; Gálvez, J.; Serna-Cock, L.; Aguilar, C.N. Valorization of Colombian fique (Furcraea bedinghausii) for production of cellulose nanofibers and its application in hydrogels. Sci. Rep. 2020, 10, 11637. [CrossRef]es_ES
dcterms.bibliographicCitation25. Ovalle-Serrano, S.A.; Gómez, F.N.; Blanco-Tirado, C.; Combariza, M.Y. Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydr. Polym. 2018, 189, 169–177. [CrossRef]es_ES
dcterms.bibliographicCitation26. Ovalle-Serrano, S.A.; Blanco-Tirado, C.; Combariza, M.Y. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose 2018, 25, 151–165. [CrossRef]es_ES
dcterms.bibliographicCitation27. Zhong, K.; Zheng, X.-L.; Mao, X.-Y.; Lin, Z.-T.; Jiang, G.-B. Sugarcane bagasse derivative-based superabsorbent containing phosphate rock with water–fertilizer integration. Carbohydr. Polym. 2012, 90, 820–826. [CrossRef] [PubMed]es_ES
dcterms.bibliographicCitation28. Spagnol, C.; Rodrigues, F.; Pereira, A.; Fajardo, A.; Rubira, A.; Muniz, E. Superabsorbent hydrogel nanocomposites based on starch- g -poly ( sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 2012, 19, 1225–1237. [CrossRef]es_ES
dcterms.bibliographicCitation29. Yang, J.; Han, C.R.; Duan, J.F.; Xu, F.; Sun, R.C. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl. Mater. Interfaces 2013, 5, 3199–3207. [CrossRef] [PubMed]es_ES
dc.description.embargonaes_ES
dc.rights.creativecommonsAttribution 4.0 International (CC BY 4.0)es_ES
dc.subject.armarcConservación de la humedad del suelo
dc.type.dcmi-type-vocabularyTextes_ES
dc.type.driverinfo:eu-repo/semantics/articlees_ES
dc.description.logical10 páginases_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/