Nociones de Geometría Plana
DIBUJO TECNICO

Nociones de Geometría Plana
GRUPO DE TRABAJO

Elaborada por: GOSMAN GALLEGO
JAIRO BORJA
GUILLERMO LEON VALENCIA

Diagramada por: JULIO RIVERA G.
División Agropecuaria
CONTENIDO

INTRODUCCION

OBJETIVO TERMINAL

1. LINEAS – CONCEPTO Y CLASIFICACION . . . 7
 • Concepto . 7
 • Clasificación . 7

2. ANGULOS . 17
 • Concepto . 17
 • Denominación . 17
 • Clasificación . 20

3. POLIGONOS . 27
 • Concepto . 27
 • Clasificación . 27
 • Líneas importantes de los polígonos 29

4. TRIANGULOS . 31
 • Concepto . 31
 • Clasificación . 32
 • Elementos . 35

5. CIRCUNFERENCIA Y CÍRCULO 39
 • Concepto . 39
 • Elementos de la circunferencia 40
 • Circunferencia concéntrica 41
 • Circunferencia excéntrica 41
 • Elementos del círculo 42

PRUEBA FINAL . 47
OBJETIVO TERMINAL

Al terminar el estudio de esta unidad, dada una hoja de prueba que contiene diferentes gráficos, el Trabajador Alumno estará en capacidad de “identificar” sin margen de error:

a. Líneas
b. Angulos
c. Polígonos
d. Triángulos
e. Círculo y sus partes
f. Circunferencia y sus elementos
1. LINEAS – CONCEPTO Y CLASIFICACION

OBJETIVO INTERMEDIO 1: Al terminar el estudio de este tema, usted estará en capacidad de identificar dentro de un conjunto de líneas, qué tipo de líneas son según:

- a. Su forma
- b. Su posición en el espacio
- c. Posición entre sí.

CONCEPTO

“Todo punto al moverse engendra una línea”.

El desplazamiento de la punta de un lápiz desde un punto (P), como se aprecia en la ilustración, genera una línea.
CLASIFICACION

En los dibujos tenemos básicamente los siguientes tipos de líneas:

Según su forma:

- **Línea recta**

 Es la engendrada por un punto que se mueve en la misma dirección.

 ![Fig. 2](image)

 Observe que la trayectoria del punto (A), siguiendo siempre la misma dirección, genera una línea recta.

- **Línea curva**

 Cuando la dirección del desplazamiento cambia siempre, la línea pasa a ser curva.

 ![Fig. 3](image)

- **Línea quebrada (o poligonal)**

 Está formada por "pedazos" de línea recta.

 ![Fig. 4](image)

 Es la línea continua formada por varias rectas en diferente dirección.
• **Línea mixta**

Es la línea continua, formada por "pedazos" de rectas y curvas.

![Fig. 5](image)

Según su posición en el espacio

En la figura siguiente, vemos líneas rectas en varias posiciones.

![Fig. 6](image)

• **Línea horizontal**

Es la que sigue la dirección de las aguas en reposo.

El nivel es un instrumento que verifica la posición horizontal.

![Fig. 7](image)
- **Línea vertical**

Es la que sigue la dirección de un cuerpo pesado que cae en el espacio.

El hilo de plomada es un instrumento que verifica la posición vertical.

![Fig. 8](image)

- **Línea inclinada**

Una línea recta está en la posición indicada, cuando no es vertical ni horizontal.

![Fig. 9](image)

Las líneas rectas a, b y c, están en posición inclinada.

![Fig. 10](image)

Observe que las aristas indicadas en la pirámide están inclinadas.
• Línea cóncava

Es la línea curva o quebrada que encontrándose en un mismo plano, no puede ser cortada en más de DOS puntos por una recta. (Vista desde el interior).

Fig. 11

• Línea convexa

Es la misma línea cóncava, considerada en sentido invertido. (Vista desde el exterior).

Fig. 12

Es decir, la misma línea es cóncava o convexa según la dirección que tomemos como referencia. (Interior o exterior).

Fig. 13
Líneas según posición entre sí

- **Líneas paralelas**

![Fig. 14](image)

Son las líneas rectas o curvas que estando en un mismo plano no se juntan aun cuando su prolongación sea indefinida.

![Fig. 15](image)

- **Líneas perpendiculares**

Cuando una línea recta cae en otra, sin inclinarse a ningún lado, decimos que son perpendiculares.

![Fig. 16](image)

Las aristas de una caja o los lados de una escuadra nos dan la idea de líneas perpendiculares.
Líneas oblicuas

Decimos que las líneas son oblicuas, cuando una recta cae a otra, inclinándose más a un lado que a otro.

La caña de un pescador, en relación con la línea, o las patas de un compás, nos dan la idea de rectas oblicuas.

Líneas convergentes

Son dos líneas no paralelas, consideradas desde el lado que tienden a juntarse.
- Líneas divergentes

Son dos líneas no paralelas, consideradas desde el lado hacia donde tienden a separarse.

Fig. 19

PARTIENDO DE UN PUNTO COMUN, TIENDEN A SEPARARSE.

El cuerpo de un embudo nos da la idea de líneas convergentes y divergentes.
EJERCICIOS

1. Trace, partiendo de cada punto, en el cuadro de la izquierda, líneas horizontales y en el de la derecha, líneas verticales.

2. Escriba la posición de cada pieza.

3. Trace dentro de cada cuadro líneas en las posiciones indicadas.
4. En el siguiente dibujo, escriba en cada flecha el nombre que recibe la(s) línea(s) que indica según su posición en el espacio.

5. En el siguiente dibujo escriba el nombre de las líneas que se indican, teniendo en cuenta su posición relativa.
2. ANGULOS

OBJETIVO INTERMEDIO 2: Al terminar el estudio de este tema y dado un ángulo, usted estará en capacidad de:

a. Clasificarlo según la abertura de sus lados.
b. Trazarle la bisectriz.

CONCEPTO

Cuando dos rectas se unen o se cruzan, se forma un ángulo.

Un ángulo es la abertura formada por dos rectas que se unen en un punto llamado VERTICE, a estas rectas las llamamos lados del ángulo.

DENOMINACION

Así como a las personas nos designan nombres para distinguirnos unas de otras:
a los ángulos los denominamos por medio de:

![Fig. 2](image1)

Letras minúsculas

Cuando utilicemos letras minúsculas se deben colocar DENTRO del ángulo. Se lee ángulo a, ángulo b y ángulo c.

![Fig. 3](image2)

Números

Los números al igual que las letras minúsculas, deben colocarse DENTRO del ángulo. Se lee ángulo 1, ángulo 2 y ángulo 3.

![Fig. 4](image3)
Letras mayúsculas

Si utilizamos letras mayúsculas, deben ir fuera del ángulo y en el vértice. Se lee ángulo A, ángulo B y ángulo C.

![Fig. 5](image)

Letras en el vértice y extremos de los lados

Al utilizar este método, al leerse o describirse se debe colocar la letra del vértice en la mitad. Se lee así: Ang. ABC, Ang. DEF y Ang. GHI.

![Fig. 6](image)

Descripción

Para describir un ángulo se pueden utilizar los siguientes símbolos:

\(\angle \); ang. y se utilizan así:

\(\angle 1; \angle b; \angle A; \angle ABC \)

Se leen ángulo 1, ángulo b, ángulo A ó ángulo ABC.

\(\hat{1}; \hat{b}; \hat{A}; \hat{ABC} \)
Bisectriz

Es la línea que parte del vértice y divide el ángulo en dos partes iguales.

La bisectriz del ángulo ABC es BD.

CLASIFICACION

En la siguiente figura, vemos ángulos de diferentes aberturas entre sus lados.

- Ángulo recto
- Ángulo agudo
- Ángulo obtuso
- Ángulo llano
- Ángulo convexo

Según la abertura comprendida entre sus lados, los ángulos se clasifican así:

Ángulo recto

Es el que tiene sus lados perpendiculares; es decir, su amplitud mide 90°.
Angulo agudo

Cuando la abertura del ángulo es menor de 90°, lo llamamos ANGULO AGUDO.

Los ángulos a, b y c son ángulos agudos.

Angulo obtuso

Un ángulo es obtuso cuando su abertura es mayor de 90° y menor de 180°.

Los ángulos 1 y 2 son ángulos obtusos, como también el que obtenemos al abrir un abanico.
Angulo llano

Es aquel, cuya abertura mide 180°.

![Fig. 12](image)

Angulo convexo

Si la abertura de un ángulo es mayor de 180° y menor de 360° es un ángulo CONVEXO.

![Fig. 13](image)

Los ángulos ABC; CDE y EFG son ángulos convexos.

Angulos complementarios

![Fig. 14](image)
Los ángulos 1 y 2; (3 + 4) y 5; 6 y 7 son ángulos complementarios porque su suma equivale a un ángulo recto así:

\[1 + 2 = 90^\circ; \quad (3 + 4) + 5 = 90^\circ; \]
\[6 + 7 = 90^\circ \]

Ángulos supplementarios

Cuando la suma de varios ángulos equivale a un ángulo llano, los llamamos ángulos supplementarios.

![Fig. 15](image)

Son ángulos supplementarios:

\[a \ y \ b \] porque \[a + b = 180^\circ \]
\[d \ y \ c \] porque \[d + c = 180^\circ \]
\[(e \ + \ f) \ y \ g \] porque \[(e + f) + g = 180^\circ \]
1. Coloque al frente de cada ángulo el nombre que recibe.

a.

b.

c.

d.

2. Trace la bisectriz del ángulo que aparece a continuación y diga con sus palabras qué entiende por bisectriz.

A
3. Dibuje: Desígnelo con:

a. Angulo convexo Una letra mayúscula
b. Angulo recto
c. Angulos complementarios
d. Angulos suplementarios
3. POLIGONOS

OBJETIVO INTERMEDIO 3: Al terminar el estudio de este tema y dado un polígono, usted estará en capacidad de determinar:

a. Si es regular o irregular.
b. Si es inscrito o circunscrito
c. Sus líneas más importantes

CONCEPTO

Es una figura plana limitada por tres o más lados.

CLASIFICACION

Los polígonos se clasifican en:

a. Regulares
b. Irregulares
c. Inscritos
Polígonos regulares
Son aquellos que tienen a su vez los lados y ángulos iguales y se denominan según sus lados.

Ejemplo:

Polígonos irregulares
Son aquellos que tienen sus lados y ángulos desiguales. Ejemplo:

Polígonos inscritos
Son aquellos cuyos lados constituyen cuerdas de la circunferencia; pueden ser regulares e irregulares y van dentro de la circunferencia. Ejemplo.
Polígonos circunscritos

Son aquellos cuyos lados son tangentes a la circunferencia yendo por consiguiente por la parte exterior de la misma. Ejemplo:

![Figura 4](image)

LINEAS IMPORTANTES DE LOS POLÍGONOS

![Figura 5](image)

a. CENTRO: Es el punto equidistante de los vértices. Ejemplo: O
b. RADIO. Es la línea trazada del centro a un vértice del polígono. Ejemplo: OA
c. APOTEMA: Es la línea perpendicular trazada del centro al lado de un polígono. Ejemplo: OB.
d. DIAGONAL: Es la recta trazada desde un vértice a otro no consecutivo. Ejemplo: CD.
e. VERTICE: Son los puntos donde se cortan los lados de un polígono. Ejemplo: A
f. ANGULO: De un polígono es la abertura formada por dos lados consecutivos. Ejemplo: 1.
g. LADO: Son las rectas que limitan a los polígonos. Ejemplo: CA.
h. PERIMETRO: Es la suma de los lados de un polígono.
CONCEPTO

El triángulo es una figura plana, limitada por tres lados y que por consiguiente tiene tres ángulos.

Denominación

Los triángulos los podemos denominar de dos maneras:

OBJETIVO INTERMEDIO 4: Al terminar el estudio de este tema, usted estará en capacidad de identificar un triángulo teniendo en cuenta su clasificación según sus lados y según sus ángulos y trazar en un triángulo cualquiera las alturas, medianas, mediatrices o bisectrices.
- **Letras mayúsculas**

![Figura 2](image)

Las letras mayúsculas se colocan en la parte exterior, ubicada en los vértices.

- **Letras minúsculas**

![Figura 3](image)

Si empleamos letras minúsculas, se ubican en la mitad del lado hacia la parte exterior.

CLASIFICACIÓN

Los triángulos se clasifican según sus lados y según sus ángulos.

Según su longitud de sus lados

Los triángulos según sus lados se clasifican en:

1. Equilátero
2. Isósceles
3. Escaleno
- **Triángulo equilátero**

Es el que tiene sus tres lados iguales.

![Figura 4](image)

El triángulo ABC es un triángulo equilátero porque tiene sus tres lados iguales.

- **Triángulo isósceles**

Es el que tiene dos lados iguales.

![Figura 5](image)

El triángulo DEF es isósceles; tiene dos de sus lados iguales. (d = e)

- **Triángulo escaleno**

Es el que tiene sus tres lados desiguales.

![Figura 6](image)
El triángulo IJN es escaleno; sus tres lados desiguales.

Según sus ángulos

Si tenemos en cuenta la abertura de sus ángulos, podemos clasificar los triángulos en:

1. Triángulo rectángulo
2. Triángulo acutángulo
3. Triángulo obtusángulo
4. Triángulo equiángulo

- **Triángulo rectángulo**

 Es el que tiene un ángulo recto.

![Figura 7](image)

- **Triángulo acutángulo**

 Es el que tiene sus tres ángulos agudos.

![Figura 8](image)

- **Triángulo obtusángulo**

 Es el que tiene un ángulo obtuso.

![Figura 9](image)
• **Triángulo equiángulo**

Es el que tiene sus ángulos iguales.

![Triángulo equiángulo](Figura 10)

ELEMENTOS

Todo triángulo consta de tres lados y tres ángulos, pero también tiene otras líneas importantes como son:

a. Altura
b. Mediatriz
c. Mediana
d. Bisectriz

Altura

Es la perpendicular que baja desde uno de los vértices al lado opuesto.

Todo triángulo tiene tres alturas. Ejemplo: AB

![Alturas de un triángulo](Figura 11)
Mediatriz

Es la perpendicular trazada desde el punto medio de uno de sus lados.

Todo triángulo tiene tres mediatrices. Ejemplo: OC.

[Diagrama de mediatriz]

Figura 12

Mediana

Es la recta trazada desde la mitad de uno de los lados al vértice opuesto.

Todo triángulo tiene tres medianas. Ejemplo: EF.

[Diagrama de mediana]

Figura 13

Bisectriz

Es la recta que divide en dos partes iguales a cualquier ángulo. Ejemplo: CD es la bisectriz del ángulo D.

[Diagrama de bisectriz]

Figura 14

Todo triángulo tiene tres bisectrices.
EJERCICIO

1. Dibuje en cada cuadro los triángulos respectivos:

Triángulo Isósceles Triángulo Equilátero

Triángulo Rectángulo Triángulo Obtusángulo Triángulo Escaleno

2. Las líneas principales del triángulo son:

 a. __
 b. __
 c. __
 d. __
 e. __
5. CIRCUNFERENCIA Y CÍRCULO

OBJETIVO INTERMEDIO 5: Al terminar el estudio de este tema, usted estará en capacidad de identificar por su nombre la circunferencia, el círculo y un polígono cualquiera y trazar los principales elementos de cada uno de ellos.

CONCEPTO

Comúnmente estos dos términos: CÍRCULO y CIRCUNFERENCIA se utilizan como sinónimos, pero esto es un error.

Distingámoslos:

Como puede observar:
La CIRCUNFERENCIA es la línea curva cuyos puntos equidistan de uno interior llamado centro.

El CÍRCULO es la superficie plana limitada por la circunferencia.

ELEMENTOS DE LA CIRCUNFERENCIA

En la circunferencia distinguimos básicamente los siguientes elementos:

1. Diámetro
2. Radio
3. Cuerda
4. Arco
5. Sagita
6. Secante
7. Tangente
8. Circunferencia concéntrica
9. Circunferencia excéntrica

Diámetro

Es la recta que une dos puntos de la circunferencia y la divide en dos partes iguales. Ejemplo: AB.

Radio

Es la recta trazada desde el centro del círculo, a cualquier punto de la circunferencia. Ejemplo: OC.

Cuerda

Es la recta que sin pasar por el centro del círculo, une dos puntos de la circunferencia. Ejemplo: DF.
Arco

Es una parte cualquiera de la circunferencia, comprendida entre dos puntos. Ejemplo: DEF.

Sagita

Es la perpendicular trazada desde la mitad de un arco a la cuerda que lo limita. Ejemplo: EH

Secante

Es la recta que corta una circunferencia en dos partes. Ejemplo: JK.

Tangente

Es la recta que toca a la circunferencia en un solo punto. Ejemplo: LM.

CIRCUNFERENCIA CONCENTRICA

Son las que tienen un mismo centro.

CIRCUNFERENCIA EXCENTRICA

Son las que estando una entre la otra, tienen centro diferente.
ELEMENTOS DEL CÍRCULO

En el círculo podemos distinguir los siguientes elementos:

1. Corona circular
2. Sector circular
3. Segmento circular

Corona circular

Es el área comprendida entre dos circunferencias concéntricas.

Figura 11

Segmento circular

Es el área comprendida entre dos radios y el arco comprendido.

Figura 12

Segmento circular

Es el área comprendida entre un arco y su cuerda.

Figura 13
EJERCICIOS

1. En la siguiente circunferencia, trace sus elementos principales.

2. Dibuje dos polígonos regulares inscritos así:
 a. Triángulo regular inscrito
 b. Cuadrilátero regular inscrito

3. Dibuje y señale en un círculo el sector circular (1) y el segmento circular (2).
A. LÍNEAS CLASIFICACIÓN

- Según su forma:
 - Línea recta
 - Línea curva
 - Línea quebrada
 - Línea mixta

- Según posición en el espacio:
 - Línea horizontal
 - Línea vertical
 - Línea inclinada
 - Línea convexa
 - Línea cóncava

B. ANGULOS CLASIFICACIÓN

- Según posición entre sí:
 - Línea perpendicular
 - Línea oblícuca
 - Línea paralelas
 - Líneas convergentes
 - Líneas divergentes

- Angulo recto
- Angulo agudo
- Angulo obtuso
- Angulo llano
- Angulo convexo
- Angulos complementarios
- Angulos suplementarios

C. TRIANGULOS CLASIFICACIÓN

- Según sus lados:
 - Triángulo equilátero
 - Triángulo isósceles
 - Triángulo escaleno

- Según sus ángulos:
 - Triángulo rectángulo
 - Triángulo obtusángulo
 - Triángulo acutángulo
 - Triángulo equilátero
D. CIRCUNFERENCIA Y CÍRCULO
ELEMENTOS

Circunferencia
- Diámetro
- Radio
- Cuerda
- Arco
- Sagita

Círculo
- Corona circular
- Sector circular
- Segmento circular

Polígonos
- Polígonos regulares
- Polígonos irregulares

E. POLÍGONOS
CLASIFICACIÓN

- Polígonos circunscritos
PRUEBA FINAL

Dada una hoja de prueba que contiene diferentes gráficos, el Trabajador Alumno identificará sin margen de error, líneas, ángulos, polígonos, círculo y sus partes, circunferencia y sus elementos.
<table>
<thead>
<tr>
<th>CARTILLAS DE DIBUJO PARA LA FAMILIA OCUPACIONAL METALMECANICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introducción al dibujo</td>
</tr>
<tr>
<td>2. Nociones de geometría plana</td>
</tr>
<tr>
<td>3. Formatos y manejo de instrumentos</td>
</tr>
<tr>
<td>4. Construcciones geométricas</td>
</tr>
<tr>
<td>5. Dibujo isométrico</td>
</tr>
<tr>
<td>6. Proyecciones diédricas y ortogonales</td>
</tr>
<tr>
<td>7. Interpretación de formas</td>
</tr>
<tr>
<td>8. Acotado</td>
</tr>
<tr>
<td>9. Introducción a los cortes y secciones</td>
</tr>
<tr>
<td>10. Lectura de planos</td>
</tr>
<tr>
<td>11. Escalas</td>
</tr>
<tr>
<td>12. Tangentes y enlaces</td>
</tr>
<tr>
<td>13. Dibujo a mano alzada</td>
</tr>
<tr>
<td>14. Técnicas y aplicación de proyecciones</td>
</tr>
<tr>
<td>15. Acotado y marcas de acabado</td>
</tr>
<tr>
<td>16. Cortes</td>
</tr>
<tr>
<td>17. Introducción a las rosas</td>
</tr>
<tr>
<td>18. Roscas</td>
</tr>
<tr>
<td>19. Ajustes y tolerancias</td>
</tr>
<tr>
<td>20. Dibujo de taller a trabajo</td>
</tr>
<tr>
<td>21. Simbología de uniones soldadas</td>
</tr>
<tr>
<td>22. Chavetas y pasadores</td>
</tr>
<tr>
<td>23. Engranajes cilíndricos rectos</td>
</tr>
<tr>
<td>24. Engranajes cilíndricos helicoidales</td>
</tr>
<tr>
<td>25. Otros engranajes</td>
</tr>
<tr>
<td>26. Dibujo de tubería</td>
</tr>
<tr>
<td>27. Esquemas eléctricos básicos</td>
</tr>
</tbody>
</table>

Básico: -METALMECANICO
-MAQUINAS HERRAMIENTA Y TROQUELERÍA
-SOLDADURA Y LAMINA

Básico:
-MAQUINAS HERRAMIENTA Y TROQUELERÍA
-SOLDADURA Y LAMINA

Básico de
-SOLDADURA Y LAMINA
-TORNO

SOLDADURA OXIACETILÉNICA

AJUSTE Y MONTAJE DE MAQUINARIA

FRESA

SOLDADURA POR ARCO
AJUSTE Y MON. MAQUINARIA
SOLDADURA POR ARCO