TECNICAS Y APLICACION DE PROYECCIONES

METALMECANICA

MODULOS BASICOS DE:
- Máquinas Herramientas y Troquelera
- Soldadura y Lámina
SERVICIO NACIONAL DE APRENDIZAJE SENA
DIRECCION GENERAL
SUBDIRECCION TECNICO PEDAGOGICA

METALMECANICA

MODULOS BASICOS DE:

- Máquinas Herramientas y Troquelera
- Soldadura y Lámina

DIBUJO TECNICO

Unidad Nº 2

DISEÑO Y ADECUACION: (Regional Cali)
Gosman Gallego
Jairo Borja
Guillermo León Valencia

Material en prueba, sujeto a revisión
Contenido

INTRODUCCION

OBJETIVO TERMINAL

1. PROYECCIONES - TECNICAS Y APLICACIONES
 1.1 Giro del objeto
 1.2 Intersección de tangencias
 1.3 Trazado de los puntos de una curva
 1.4 Intersecciones de cilindros

EJERCICIOS

2. ESPACIAMIENTO DE VISTAS EN UN FORMATO
 2.1 Espaciamiento de 2 vistas
 2.2 Espaciamiento de 3 vistas

EJERCICIOS

PRUEBA FINAL

HOJA DE RESPUESTAS

BIBLIOGRAFIA
INTRODUCCION

Generalmente el personal técnico de cualquier empresa únicamente interpreta planos, pero, en ocasiones tendrá que realizar planos de cualquier pieza de máquinas. Siendo importante una buena representación con el fin de clarificar ideas y procesos de construcción, se hace necesario que esos planos sean ejecutados en la mejor forma posible y de manera técnica.

En la unidad instruccional "Proyección ortogonal y diédrica" se han expuesto los fundamentos de la representación de piezas de máquinas por medio de una, dos o más vistas. Aquí complementaremos esa información con una serie de técnicas a tener en cuenta para representaciones estéticas y ordenadas.
OBJETIVO

TERMINAL

Después de estudiar esta unidad instruccional, usted estará en capacidad de:

1. Dados varios objetos en madera, describirlos por medio de 2 o más vistas, girando el objeto hacia usted.

2. Después de tomar las vistas necesarias en la descripción del objeto, espaciarlas y trazarlas en un formato tamaño A.

CRITERIO DE EVALUACION: Sin margen de error
1.1 Giro del objeto

Al tomar las vistas de un objeto grande, el observador ha de desplazarse en diferentes direcciones, para poder visualizar cada una de las posiciones de él: frente, planta, perfil, etc.

En objetos pequeños, tales como piezas de máquinas y modelos (como los que existen en el taller de dibujo), se puede permanecer sentado y mover el objeto hasta la posición deseada.

Supongamos que se quieren dibujar tres vistas del "sujetador" mostrado en la figura 1.1 (a). Las flechas indican las direcciones en las cuales se verá el objeto. Nótese las tres dimensiones principales: anchura, altura y profundidad.
Fig. 1.1 Giro del Objeto para Obtener Tres Vistas

- Tómese el objeto de tal forma que se pueda mirar perpendicularly a su cara frontal (Fig. 1.1 (b)

La vista frontal nos muestra
la altura y la anchura, pero
no la profundidad.

- Para obtener la vista lateral derecha, girar la cara de la figura 1.1 (a) marcada con lado derecho por la flecha, hasta que quede a la posición de frente.
La vista lateral derecha muestra la altura y la profundidad pero no la anchura.

- Girar el objeto hasta la posición inicial (frontal) y luego llevar la cara marcada como superior en la figura 1.1 (a), hasta que se mire perpendicularmente de frente.

La vista superior muestra la anchura y la profundidad pero no la altura.

NOTA: Cada vista muestra dos dimensiones pero no la tercera. Así que un objeto tridimensional requiere al menos dos vistas para describirlo y algunas veces 3 o más.

1.2 Intersección de tangencias

La figura 1.2 muestra algunas intersecciones con tangentes, es importante tenerlas en cuenta, ya que, aparecen frecuentemente en piezas mecánicas y su deficiente manejo nos puede hacer cometer graves errores en la descripción gráfica de éstos.

CASO 1

Cuando una superficie curva es tangente a una superficie plana no se debe mostrar la línea donde se unen.
CASO 2

Si una superficie curva interseca a una superficie plana se forma una arista definida.

CASO 3

En este caso en la vista superior no aparece ninguna línea porque allí no hay ninguna intersección.

CASO 4

Una superficie vertical en la vista frontal produce una línea en la vista superior. En la vista lateral no se representó línea por ser éste el mismo caso 1.

En la figura 1.6 se muestran algunas aplicaciones de las anteriores casos. Analíceles.
1.3 Trazado de los puntos de una curva

Cuando un plano corta una superficie cilíndrica, se produce una arista curva difícil de trazar en la mayoría de los casos. El procedimiento explicado a continuación facilitará la labor:

Consideremos una pieza de moldura de un cuarto de bocel como se muestra en la figura 1.7

Ahora, si cortamos la moldura a un ángulo determinado con un plano (Fig. 1.8), se forma una arista curva que debe aparecer en la vista superior como una línea curva.
Para trazar esa línea marcar puntos en el arco de la vista lateral como se indica en la Fig. 1.8

Proyectar esos puntos tanto a la vista frontal como a la superior y luego determinar puntos en la vista de planta por intersección de proyectantes.

Unir los puntos determinados por medio de un curvígrafo o a mano alzada con la cual quedará determinada la línea. Fig. 1.10

La figura 1.11 nos muestra un procedimiento similar al anterior.

1.4 Intersecciones de cilindros

Cuando se encuentren intersecciones de cilindros hay que tomar en cuenta los siguientes casos:
Si la intersección es de un cilindro muy pequeño con un cilindro grande, ésta será tan insignificante que se puede representar convencionalmente por medio de una línea. (ver figura 1.12)

Si la intersección es algo mayor que en el caso anterior, su representación es aproximada. (ver figura 1.13).

Aquí la representación se logra por medio de un arco de radio \(r \) igual al radio \(R \) del cilindro grande.

Si la intersección es mayor (Fig. 1.14) que la de los dos casos anteriores se debe construir la curva real, la cual se desarrolla con el método utilizado en el numeral 1.3

La figura 1.15 nos muestra cómo queda una intersección de dos cilindros de igual diámetro.

Observe que se indica por medio de líneas a 45°, en la vista frontal.
EJERCICIOS

1. Pida a su Instructor un modelo en madera y en formato tamaño A describalo por medio de una, dos o más vistas según sea el caso. Obtenga las vistas por medio del método "GIRO DEL OBJETO", explicado en el numeral 1.1. Usar formato 1.

2. En un formato tamaño A, dibuje las vistas frontal y superior del "portasorte para herramienta" mostrado en la figura. Usar formato 2.

3. En el formato No.3, realizar las intersecciones entre cilindros, unión en forma de T.

 a. Cilindro de 2" Ø con cilindro de 1/2 Ø
 b. Cilindro de 2" Ø con cilindro de 3/4" Ø
 c. Cilindro de 2" Ø con cilindro de 1 3/4 Ø
OBJETIVO INTERMEDIO 2: Dados dos objetos con sus dimensiones reales, usted debe espaciar y trazar correctamente las vistas que se pidan en un formato tamaño A.

Una vez definidas las vistas con las que se representará un objeto o pieza determinada y de haber definido la posición correcta de ellas (analice la figura 2.1), se deben tomar en cuenta las indicaciones que explicaremos posteriormente, para que el dibujo sea presentado en forma clara y correcta.

TENGA EN CUENTA QUE UN PLANO HECHO CON BUENA ESTETICA Y CALIDAD BRINDA BUENAS INDICACIONES PARA LA CONSTRUCCION DE PIEZAS Y NOS EVITA COMETER ERRORES.

2.1 Espaciamiento y trazado de 2 vistas

Nunca se debe comenzar ningún plano mecánico sin haber realizado el espaciamiento correcto de las vistas sobre el formato ESTANDARIZADO en su empresa (tamaño A para
nosotros) y nunca se deben trazar líneas hasta que se haga hecho esto de manera apropiada.

Para el trazado de 2 vistas se debe proceder como en el ejemplo que sigue:

Dada la "chumacera" y el formato tamaño A de las figuras 2.2 y 2.3

I. De acuerdo a las dimensiones del objeto se debe colocar el formato en la posición que mejor convenga (ver fig. 2.3). Para nuestro ejemplo: Posición horizontal.

El espacio horizontal de la pieza se muestra en la fig. 2.4

El espacio de trabajo es 9 3/8" y la anchura de la chumacera es 6" restar 6" de 9 3/8", quedan 3 3/8". Dividase 3 3/8" entre 2 para los espacios
a cada lado. Será 1 11/16. Las 6" deben ser exactas.

II \textbf{Espaciamento vertical (fig.2.5)}
Ahora el espacio de trabajo es de 7". La vista superior requiere de un espacio vertical de 2 1/4" y la frontal una altura de 1 3/4".

Entre vistas se debe dejar un espacio de 1" aproximadamente, sumando estos valores tendremos 5" que restados a 7" nos dejará un espacio de 2". A cada lado quedan por tanto espacios de 1"

III Bosquejar las vistas con líneas de construcción suaves. Evite el trazo de líneas de construcción entre vistas. Usar lápiz duro.

Los extremos a partes redondeadas deben trazarse primero en la vista donde estén y luego proyectar a la otra. (Fig.2.6)

IV Terminar el dibujo engrosando primero los arcos y después todas las líneas horizontales y por último las verticales (Fig. 2.7)
2.2. Espaciamiento y trazado de 3 vistas

Como en el caso anterior el espaciamiento de 3 vistas se explicará con un ejemplo:

Tomemos el "bloque de control" y el formato que se muestran en la figura 2.9.
El procedimiento de espaciamiento práctico se indica en la figura 2.10

Explicación de la fig. 2.10: Como se muestra en I, la vista frontal ocuparía un espacio de 2" de altura, en II la vista superior ocuparía 2" de altura también. Dejar entre vistas un espacio de 1". Sumando 2" + 1" + 2" tendremos 5". Restar 5" de 7" que es la altura disponible, lo que nos dará 2". Dividir 2" por 2 para obtener 1" o sea el espacio en la parte superior y en la parte inferior.

En III las vistas frontal y superior ocupan espacios de 4 1/4" de ancho y la vista lateral derecha de 2" ancho. Dejar un espacio de 1 1/8" entre vistas frontal y lateral derecha sumando 4 1/4" + 1 1/8" + 2" tendremos 7 3/8". Ahora restar 7 3/8" de 9 3/8" lo cual nos da 2" que dividido por 2 nos deja espacios a la izquierda y derecha del espacio horizontal disponible iguales a 1".

23
En la figura 2.11 se indica la secuencia general para el trazado del "bloque de control" de la figura 2.9 (a) o de cualquier objeto.

Fig. 2.11 Dibujo Mecánico de Tres Vistas
procedimiento general.
EJERCICIOS

1. Espaciar y trazar 2 vistas (superior y frontal) de la "AGARRADERA PARA PUERTA DE COCHERA" mostrada en la figura. No colocar gotas.

Fig. 2.12 Agarradera Para Puerta de Cochera

2. Dada la "BASE EN CUNA" de la figura 2.13 usted debeespaciar y trazar 3 vistas en un formato tamaño A.

Fig. 2.13 Base en Cuna
PRUEBA FINAL

Escoja 3 objetos cualquiera de los que se muestran en la figura 2.14. Pídalos a su Instructor, tome sus dimensiones y con una escala apropiada dibújelo en formatos tamaño A, espaciando y trazando correctamente las vistas que sean necesarias como se ha explicado en esta unidad instruccional. Las dimensiones y el espaciamiento se pueden hacer en mm.
Hoja de Respuestas

El Instructor analizará con usted sus ejercicios para lo cual, deberá mostrar sus dibujos finales incluyendo la hoja en la que tomó sus datos e hizo sus cálculos.
BIBLIOGRAFÍA

SPENDER, Henry C. DYGDON, John T.